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• Quantum information

Motivation

Grover algorithm in a 159Tb(III)Pc2

qudit single molecule transistor

Chem. Soc. Rev., 2012, 41, 7464-7478
Phys. Rev. Lett. 2017, 119, 187702     Adv. Mater. 2019, 31, 1806687
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• Quantum information

Improving quantum coherences by operating 
at clock transitions (CT) in a Lu(II) 5d1

Nat. Chem. 2022, 14, 361–362     Nat. Chem. 2022, 14, 392–397

ൗ𝑑𝐸
𝑑𝐵 ∝ 𝑀

At CT, system is 
protected from 
magnetic noise 
(dipolar fields)

Grover algorithm in a 159Tb(III)Pc2

qudit single molecule transistor

Chem. Soc. Rev., 2012, 41, 7464-7478
Phys. Rev. Lett. 2017, 119, 187702     Adv. Mater. 2019, 31, 1806687
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• OLEDs

Spin-statistics limit Quantum Efficiency

Involve T1 (∆𝐸𝑆𝑇 & SOC) to improve QE

Spin doublet avoids them altogether

Motivation



Motivation

• Synthetic chemistry

Science, 2022, 377, 1323–1328

Massive substrate scope

Radical-mediated routes to C-H bond formation

High yields and “mild” conditions

By-product: volatile aromatic in place of tin or 
silicon waste
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• Experimental characterisation – DC magnetometry measures moment varying field and temperature

Molecular Magnetism

Access to static & dynamic
properties of spin-only and 
spin-orbit coupled systems



Access to static & dynamic
properties of spin-only and 
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• Experimental characterisation – AC magnetometry measures moment varying field, temperature and AC frequency

Molecular Magnetism

Access to relaxation of 
magnetisation 
characteristic time (𝜏)



• Experimental characterisation – EPR measures spin transitions varying field and temperature

Molecular Magnetism

Access to relaxation of 
magnetisation 
characteristic time (𝜏)

Access to static & dynamic
properties of spin-only and 
spin-orbit coupled systems



• Experimental characterisation – electronic structure interrogated with complementary methods

Molecular Magnetism

Access to relaxation of 
magnetisation 
characteristic time (𝜏)

Access to static & dynamic
properties of spin-only and 
spin-orbit coupled systems

• A physically meaningful model spin
Hamiltonian is formulated for the system

• Data is fitted (global) to validate, refine or
discard the model

• Initial guess values are obtained from ab
initio methods

• PHI1 or EasySpin2 are customarily used

1 J. Comp. Chem., 2013, 34, 1164–1175
2 J. Magn. Reson. 2006, 178(1), 42-55



• Theory and computation –

Molecular Magnetism



• Theory and computation – Geometry optimisation with Density Functional Theory (DFT)

➢ Both in gas-phase (Gaussian) and periodic conditions (Crystal, VASP, Phonopy)

➢ For spin-only systems:

- Hybrid, GGA, meta-GGA, range-corrected functionals & standard basis sets

➢ For spin-orbit coupled systems:

- Exchange-correlation functionals & ECPs – diamagnetic analogue with actual isotopic mass for normal modes

Molecular Magnetism



• Theory and computation – Electronic structure with DFT & multiconfigurational methods (CASSCF, PT2, MRCI)

➢ For spin-only systems:

- ∆𝐸 between spin-adapted (OpenMolcas) states describe model spin Hamiltonian parameters (J, ZFS, Τ𝑡 𝑈, ⋯)

- Mapping approaches to employ broken symmetry solutions (Gaussian)

- Standard basis sets
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• Theory and computation – Electronic structure with DFT & multiconfigurational methods (CASSCF, PT2, MRCI)

➢ For spin-only systems:

- ∆𝐸 between spin-adapted (OpenMolcas) states describe model spin Hamiltonian parameters (J, ZFS, Τ𝑡 𝑈, ⋯)

- Mapping approaches to employ broken symmetry solutions (Gaussian)

- Standard basis sets

➢ For spin-orbit coupled systems (OpenMolcas) :

- Relativistic corrections: scalar 2nd-order Douglas-Kroll-Hess and ANO-RCC basis set

- SOC: AMFI and State-Interaction between appropriate number of states for each spin-multiplicity

- Parametrisation of ab initio results by means of Crystal Field Theory

Molecular Magnetism

𝐻𝐶𝐹 = 

𝑘=2,4,6



𝑞=−𝑘

𝑘

𝐵𝑘
𝑞𝜃𝑘 𝑂𝑘

𝑞

𝐵𝑘
𝑞: Crystal Field Parameters (CFPs)

𝜃𝑘: Operator equivalent factors
𝑂𝑘

𝑞
: Stevens operators (LC of 𝐿𝑍, 𝐿+, 𝐿−)



• Theory and computation – Spin dynamics with master matrix & 1st order TDPT 

Molecular Magnetism

➢ Description of spin-phonon coupling:

- Gas-phase molecular normal modes

- Transition rates are calculated with Fermi’s golden rule

- Orbach process

➢ Dynamics:

- Master matrix formalism

- Solution yields how long it takes to reach equilibrium 𝜏

- Solve at different temperatures for direct comparison to experimental relaxation profiles

- Identify main deactivation pathways and hope to affect them with molecular design

ห ൿ−𝑚𝑗
𝑚𝑎𝑥 ⋯ ห ൿ𝑚𝑗

𝑚𝑎𝑥

out-of-equilibrium

equilibrium



Single Molecule Magnets

• What makes an SMM and why Dy(III)?

Slow relaxation of magnetisation → roughly105 < 𝜏(𝑠) < 102 at 2 K, 𝜏(𝑠) < 10−4 as hot as possible

➢ Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)



Single Molecule Magnets
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Russell-Saunders coupling scheme:

How are they distributed?

Slow relaxation of magnetisation → roughly105 < 𝜏(𝑠) < 102 at 2 K, 𝜏(𝑠) < 10−4 as hot as possible

➢ Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)

Example: Dy(III) 4f9 electronic configuration. 4f orbitals are shielded by filled atomic shells → unquenched 𝐿

• What makes an SMM and why Dy(III)?
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Single Molecule Magnets

𝐿 =𝑚𝐿 = 5
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𝑚𝐿 : −3 −2 −1 0 1 2 3

𝑚𝑆 :    0 0 Τ1 2 Τ1 2 Τ1 2 Τ1 2 Τ1 2

Russell-Saunders coupling scheme:

How are they distributed?

Ligands affect the

relative stabilisation

and composition!

Slow relaxation of magnetisation → roughly105 < 𝜏(𝑠) < 102 at 2 K, 𝜏(𝑠) < 10−4 as hot as possible

➢ Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)

Example: Dy(III) 4f9 electronic configuration. 4f orbitals are shielded by filled atomic shells → unquenched 𝐿

• What makes an SMM and why Dy(III)?



Single Molecule Magnets

• Molecular design: from static to dynamic properties

Axial ligand fields are key

➢ States with largest 𝑚𝐽 are stabilised; states with smallest 𝑚𝐽 are destabilised – ∆𝐸 informs of 𝑈𝑒𝑓𝑓

1 J. Sievers, Zeitschrift für Physik B, Condensed
Matter 1982, 45, 289-296.

Fig. Free-ion charge density plots for the
𝑚𝐽 states of the ground Hund’s rule

term of Dy(III) as derived by Sievers.1

Figure credit: J. G. C. Kragskow.



Single Molecule Magnets

• Molecular design: from static to dynamic properties

1 J. Sievers, Zeitschrift für Physik B, Condensed
Matter 1982, 45, 289-296.

Fig. Free-ion charge density plots for the
𝑚𝐽 states of the ground Hund’s rule

term of Dy(III) as derived by Sievers.1

Figure credit: J. G. C. Kragskow.

C. A. P. Goodwin, D. Reta, F. Ortu, N. F. Chilton, D. P. Mills, 
JACS 2017, 139, 51, 18714–18724

Axial ligand fields are key

➢ States with largest 𝑚𝐽 are stabilised; states with smallest 𝑚𝐽 are destabilised – ∆𝐸 informs of 𝑈𝑒𝑓𝑓

➢ 𝑈𝑒𝑓𝑓 is a key indicator of a SMM performance (static) – How easy it is to relax over the barrier

𝑈𝑒𝑓𝑓
Note that for Yb(III), stabilisation is
reversed wrt Dy(III)



Single Molecule Magnets

• Molecular design: from static to dynamic properties

Cyclopentadienyl-based Dy(III) are the best performing SMMs 1, 3-5: Chem. Sci. 2019, 9, 8492
2: Nature, 2017, 548, 439
6: Science 2018, 362, 6421

𝑇𝐵

Blocking 
temperatures (𝑇𝐵) 
and open magnetic 
hystereses above 

liquid-nitrogen



Single Molecule Magnets

• Molecular design: from static to dynamic properties

Cyclopentadienyl-based Dy(III) are the best performing SMMs 1, 3-5: Chem. Sci. 2019, 9, 8492
2: Nature, 2017, 548, 439
6: Science 2018, 362, 6421

𝑇𝐵

Similar molecular 
structures, yet widely 

differing dynamic 
properties

Spin-phonon coupling



Single Molecule Magnets
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Single Molecule Magnets

• Our approach to ab initio spin dynamics

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

➢ Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

𝐵𝑘
𝑞 𝑄𝑗 , 𝑄𝑗

′ , ⋯ = 𝐵𝑘
𝑞 𝑄𝑒𝑞 + 

𝑗

3𝑁−6

𝑄𝑗
𝜕𝐵𝑘

𝑞

𝜕𝑄𝑗 𝑒𝑞

𝐻𝑆𝑃,𝑗 = 

𝑘=2,4,6



𝑞=−𝑘

𝑘

𝐵𝑘
𝑞(𝑄𝑗)𝜃𝑘 𝑂𝑘

𝑞
= 

𝑘=2,4,6



𝑞=−𝑘

𝑘

𝑄𝑗
𝜕𝐵𝑘

𝑞

𝜕𝑄𝑗 𝑒𝑞

𝜃𝑘 𝑂𝑘
𝑞

𝐻𝐶𝐹 = 

𝑘=2,4,6



𝑞=−𝑘

𝑘

𝐵𝑘
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Single Molecule Magnets

• Our approach to ab initio spin dynamics

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

➢ Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates 𝛾𝑖𝑓 for the Orbach process

𝛾𝑖𝑓 =
2𝜋

ℏ


𝑗

𝑓 

𝑘=2,4,6



𝑞=−𝑘

𝑘
𝜕𝐵𝑘

𝑞

𝜕𝑄𝑗 𝑒𝑞

𝜃𝑘 𝑂𝑘
𝑞
𝑖

2

𝑛𝑗 ± 1 𝑄 𝑛𝑗
2
𝜌𝑗 ∆𝐸𝑓𝑖

𝑓 𝐻𝑆𝑃,𝑗
𝑒 𝑖 → Does the vibrational motion affect Dy?



Single Molecule Magnets

• Our approach to ab initio spin dynamics

𝑛𝑗 ± 1 𝑄 𝑛𝑗 → Is the vibrational mode occupied at transition energy?

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

➢ Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian
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Single Molecule Magnets

• Our approach to ab initio spin dynamics

𝜌𝑗 ∆𝐸𝑓𝑖 → How close in energy are the vibration to the electronic state?

(only free parameter in our approach)

Nat. comm. 2017, 8, 14620

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)
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Single Molecule Magnets

• Our approach to ab initio spin dynamics

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

➢ Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Simulate dynamics as a classical kinetic process master matrix

𝑑

𝑑𝑡
𝑝𝑖 𝑡 =

𝑓≠𝑖

[𝛾𝑖𝑓𝑝𝑓 𝑡 − 𝛾𝑓𝑖𝑝𝑖 𝑡 ]

Diagonalise matrix 𝚪 at different
T and obtain 𝜏 to compare
directly to relaxation profiles.

Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling – distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

➢ Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates 𝛾𝑖𝑓 for the Orbach process

ห ൿ−𝑚𝑗
𝑚𝑎𝑥 ⋯ ห ൿ𝑚𝑗

𝑚𝑎𝑥



Single Molecule Magnets

• Our approach to ab initio spin dynamics – comparison to experiment (JACS. 2021, 143, 15, 5943)

Comparison of experimental (circles) and ab 
initio calculated (lines) relaxation rates for 1–
6. Fixed fwhm line widths of 6 (blue), 10 
(orange), and 20 cm–1 (green) are employed.

➢ FWHM independent.

➢ Consistent overestimation of 𝜏
by a factor of ca. 10.

➢ Correct ordering of the
calculated 𝜏.

➢ Our method can be confidently
employed as a predictive tool.



better

worse

Single Molecule Magnets

• Our approach to ab initio spin dynamics – can we do better? (JACS. 2021, 143, 15, 5943)

Proposed compounds aim at 
maximising  𝑈𝑒𝑓𝑓 by tweaking:

• Distances to ligands.

• Angle between ligands and Dy.

• Charge of ligands.



Single Molecule Magnets
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Organic Radicals

• How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states
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Di/polyradicals through extended 𝜋-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)
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➢ Lattice classification → odd alternant with non-disjoint non-bonding MOs are target



Organic Radicals

• How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states

𝑁 = 𝑛𝑠𝑡𝑎𝑟𝑟𝑒𝑑 − 𝑛𝑛𝑜𝑛−𝑠𝑡𝑎𝑟𝑟𝑒𝑑

𝑁𝑒𝑣𝑒𝑛 = 0 / 𝑁𝑜𝑑𝑑 = 2
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(because orthogonal and degenerate,
𝑆𝑎𝑏~0 while 𝐾𝑎𝑏 ≠ 0 with ∆𝐸𝑆𝑇= −2𝐾𝑎𝑏)
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Organic Radicals

• How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states

Multiple ways to generate monoradicals: captodative, photolysis, redox – not discussed here

Di/polyradicals through extended 𝜋-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)

➢ Lattice classification → odd alternant with non-disjoint non-bonding MOs are target

𝑁 = 𝑛𝑠𝑡𝑎𝑟𝑟𝑒𝑑 − 𝑛𝑛𝑜𝑛−𝑠𝑡𝑎𝑟𝑟𝑒𝑑

𝑁𝑒𝑣𝑒𝑛 = 0 / 𝑁𝑜𝑑𝑑 = 2

How much do NBMOs overlap?

A little for even / A lot for odd

(because orthogonal and degenerate,
𝑆𝑎𝑏~0 while 𝐾𝑎𝑏 ≫ 0 with ∆𝐸𝑆𝑇= −2𝐾𝑎𝑏)

Broken bonds to access diamagnetic state?

0 for even / 1 for odd



Organic Radicals

• How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states

Multiple ways to generate monoradicals: captodative, photolysis, redox – not discussed here

Di/polyradicals through extended 𝜋-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)

➢ Lattice classification → odd alternant with non-disjoint non-bonding MOs are target

Caution: these are approximate guidelines derived for idealised systems. Real molecules are MUCH trickier

➢ Other crucial factors for radical stabilisation: kinetic (steric) and thermodynamic (delocalisation)

➢ Radicals are particularly sensitive to solvent effects

➢ Nevertheless useful



Organic Radicals

• Impact of structural flexibility – A molecular junction (Nano Lett. 2016, 16, 3, 2066–2071)

Experimental inconsistencies (IETS)



Organic Radicals

• Impact of structural flexibility – A molecular junction (Nano Lett. 2016, 16, 3, 2066–2071)

Experimental inconsistencies (IETS)

Sample #1 Sample #2 Sample #3

Ground state 
changes with 

sample



Organic Radicals

• Impact of structural flexibility – A molecular junction (Nano Lett. 2016, 16, 3, 2066–2071)

Computational insight

➢ Ising Hamiltonian to calculate exchange interaction as with 𝐽12 = 𝐽23 = 𝐽13 = 𝐽 (isosceles)

➢ Broken symmetry (DFT) approach: 𝐻𝑆 = | 𝛼𝛼𝛼ۄ , 𝐿𝑆 = | 𝛼𝛼𝛽ۄ = | 𝛼𝛽𝛼ۄ = | 𝛽𝛼𝛼ۄ → 𝐸| ۧ𝐿𝑆 − 𝐸| ۧ𝐻𝑆 = 𝐽

𝐻 =

𝑖,𝑗

𝐽𝑖𝑗 መ𝑆𝑖
𝑧 መ𝑆𝑗

𝑧
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Organic Radicals

• Impact of structural flexibility – A molecular junction (Nano Lett. 2016, 16, 3, 2066–2071)

Computational insight

➢ Ising Hamiltonian to calculate exchange interaction as with 𝐽12 = 𝐽23 = 𝐽13 = 𝐽 (isosceles)

➢ Broken symmetry (DFT) approach: 𝐻𝑆 = | 𝛼𝛼𝛼ۄ , 𝐿𝑆 = | 𝛼𝛼𝛽ۄ = | 𝛼𝛽𝛼ۄ = | 𝛽𝛼𝛼ۄ → 𝐸| ۧ𝐿𝑆 − 𝐸| ۧ𝐻𝑆 = 𝐽

➢ Explore torsion with dihedrals

➢ J inversion by 𝜋-disruption (non-disjoint → disjoint)

Spin densities @

35 ° equilibrium 65 °

𝐻 =

𝑖,𝑗

𝐽𝑖𝑗 መ𝑆𝑖
𝑧 መ𝑆𝑗

𝑧
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• Impact of structural flexibility – Chirality meets ferromagnetism (JACS, 2016, 138 (16), 5271)

Building blocks towards low-dimensionality systems

➢ Previous failed synthetic efforts imposed planarity

Can the inherent structural flexibility be exploited?

➢ B3LYP calculations in periodic & gas-phase to compare structural and magnetic properties of different conformers

➢ Broken symmetry approach to 1st neighbours interactions

➢ Linear vs helix:

Helix structure is stabilised 2.8 Kcal/mol per radical center

J is 18% larger in helix (~ 390 cm-1)

➢ Ferromagnetism & chirality on the same molecular platform
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Organic Radicals

• Impact of structural flexibility – Chirality meets ferromagnetism

Let’s speculate

➢ Synthetically feasible

➢ Structural anisotropy induces
magnetic anisotropy

➢ Enantiomeric separation

➢ Functional

Proposal as spin-filter

➢ Transport calculations (?)
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