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Motivation

* Quantum information

Grover algorithm in a >3Tb(lIl)Pc,
gudit single molecule transistor
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Motivation

* Quantum information

Improving quantum coherences by operating
at clock transitions (CT) in a Lu(ll) 5d*
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Motivation

* OLEDs

Spin-statistics limit Quantum Efficiency

Conventional fluorescence
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Motivation

e OLEDs I Improving Quantum Efficiency
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Motivation

* OLEDs

Spin-statistics limit Quantum Efficiency

Spin doublet avoids them altogether

Conventional fluorescence
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Motivation

e Synthetic chemistry
Massive substrate scope

Radical-mediated routes to C-H bond formation A ] o v, Mo
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Molecular Magnetism

* Experimental characterisation —



Molecular Magnetism

* Experimental characterisation — DC magnetometry measures moment varying field and temperature
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Molecular Magnetism

* Experimental characterisation — AC magnetometry measures moment varying field, temperature and AC frequency
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Molecular Magnetism

Experimental characterisation — EPR measures spin transitions varying field and temperature
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Molecular Magnetism

* Experimental characterisation — electronic structure interrogated with complementary methods

e A physically meaningful model spin
Hamiltonian is formulated for the system

* Data is fitted (global) to validate, refine or
discard the model

* Initial guess values are obtained from ab
initio methods

* PHI! or EasySpin? are customarily used

1J. Comp. Chem., 2013, 34, 1164-1175
2 J. Magn. Reson. 2006, 178(1), 42-55
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* Theory and computation —



Molecular Magnetism

* Theory and computation — Geometry optimisation with Density Functional Theory (DFT)

» Both in gas-phase (Gaussian) and periodic conditions (Crystal, VASP, Phonopy)

» For spin-only systems:

- Hybrid, GGA, meta-GGA, range-corrected functionals & standard basis sets

» For spin-orbit coupled systems:

- Exchange-correlation functionals & ECPs — diamagnetic analogue with actual isotopic mass for normal modes



Molecular Magnetism

* Theory and computation — Electronic structure with DFT & multiconfigurational methods (CASSCF, PT2, MRCI)

» For spin-only systems:

- AE between spin-adapted (OpenMolcas) states describe model spin Hamiltonian parameters (J, ZFS, ¢/, -+*)
- Mapping approaches to employ broken symmetry solutions (Gaussian)

- Standard basis sets
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Molecular Magnetism

* Theory and computation — Electronic structure with DFT & multiconfigurational methods (CASSCF, PT2, MRCI)

» For spin-only systems:

- AE between spin-adapted (OpenMolcas) states describe model spin Hamiltonian parameters (J, ZFS, ¢/, -+*)
- Mapping approaches to employ broken symmetry solutions (Gaussian)

- Standard basis sets

» For spin-orbit coupled systems (OpenMolcas) :

- Relativistic corrections: scalar 2"9-order Douglas-Kroll-Hess and ANO-RCC basis set
- SOC: AMFI and State-Interaction between appropriate number of states for each spin-multiplicity

- Parametrisation of ab initio results by means of Crystal Field Theory

k
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0,.: Operator equivalent factors

qu: Stevens operators (LC of f,Z, i+, f,_)



Molecular Magnetism

Theory and computation — Spin dynamics with master matrix & 1%t order TDPT

» Description of spin-phonon coupling:

- Gas-phase molecular normal modes
- Transition rates are calculated with Fermi’s golden rule

- Orbach process

» Dynamics:

- Master matrix formalism
- Solution yields how long it takes to reach equilibrium t
- Solve at different temperatures for direct comparison to experimental relaxation profiles

- ldentify main deactivation pathways and hope to affect them with molecular design
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Single Molecule Magnets

*  What makes an SMM and why Dy(lll)?

Slow relaxation of magnetisation — roughly 10° < 7(s) < 10%at 2 K, 7(s) < 10™* as hot as possible

» Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)
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» Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)
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Single Molecule Magnets

What makes an SMM and why Dy(lll)?

Slow relaxation of magnetisation — roughly 10° < 7(s) < 10%at 2 K, 7(s) < 10™* as hot as possible

» Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)

Example: Dy(lll) 4f° electronic configuration. 4f orbitals are shielded by filled atomic shells - unquenched L

EA

L=ZmL=5

IL-S|<J<|L+S|

> <1</,

Russell-Saunders coupling scheme:

How are they distributed?

Electronic
configuration

4f{n-]}5d1’

4f°

4"

Coulomb

(25+1)f

CF

o

=1cm’!




Single Molecule Magnets

What makes an SMM and why Dy(lll)?

Slow relaxation of magnetisation — roughly 10° < 7(s) < 10%at 2 K, 7(s) < 10™* as hot as possible

» Key ingredient is magnetic anisotropy, achieved with large spin-orbit coupling (SOC)

Example: Dy(lll) 4f° electronic configuration. 4f orbitals are shielded by filled atomic shells - unquenched L

L=ZmL=5

IL-S|<J<|L+S|

> <1</,

Russell-Saunders coupling scheme:

How are they distributed?

EA

Electronic

configuration Coulomb SOC CF B
4f "5 ! Ligands affect the
relative stabilisation
and composition!
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Single Molecule Magnets

Molecular design: from static to dynamic properties

Axial ligand fields are key

» States with largest m; are stabilised; states with smallest m; are destabilised — AE informs of U¢/f

Fig. Free-ion charge density plots for the
ED'y . . . . . . m; states of the ground Hund’s rule
HI'“ term of Dy(lll) as derived by Sievers.!

Figure credit: J. G. C. Kragskow.

[ 1 J. Sievers, Zeitschrift fur Physik B, Condensed
0 1 2 3 4 5 6 7 8 Matter 1982, 45, 289-296.



Single Molecule Magnets

* Molecular design: from static to dynamic properties

Axial ligand fields are key

» States with largest m; are stabilised; states with smallest m; are destabilised — AE informs of U¢/f

Fig. Free-ion charge density plots for the
GD'y . . . . . . m; states of the ground Hund’s rule
HI'W term of Dy(lll) as derived by Sievers.!

Figure credit: J. G. C. Kragskow.

[ 1 J. Sievers, Zeitschrift fur Physik B, Condensed
0 1 2 3 4 5 6 7 8 Matter 1982, 45, 289-296.

Note that for Yb(lll), stabilisation is
reversed wrt Dy(lll)

C. A. P. Goodwin, D. Reta, F. Ortu, N. F. Chilton, D. P. Mills,
JACS 2017, 139,51, 18714-18724

eego-o

[Yb(Cp™),Cl] [Yb(Cp™),I*



Single Molecule Magnets

Molecular design: from static to dynamic properties

Cyclopentadienyl-based Dy(lll) are the best performing SMMs
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Single Molecule Magnets

Molecular design: from static to dynamic properties

1, 3-5: Chem. Sci. 2019, 9, 8492
2: Nature, 2017, 548, 439
6: Science 2018, 362, 6421

Cyclopentadienyl-based Dy(lll) are the best performing SMMs
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Single Molecule Magnets

* Our approach to ab initio spin dynamics



Single Molecule Magnets

Our approach to ab initio spin dynamics
Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling — distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

» Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian
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Single Molecule Magnets

Our approach to ab initio spin dynamics
Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)
Vibronic coupling — distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

» Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates y; for the Orbach process

2
k

2T 0By 1 -
vir =7 2\ Z =) 60" [i)| [ £ 11QIm)|*p; (AE;:)
h 29 ),

j k=2,4,6 q=—k

(f |I:I\§P,j|i ) - Does the vibrational motion affect Dy?



Single Molecule Magnets

Our approach to ab initio spin dynamics
Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)
Vibronic coupling — distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

» Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates y; for the Orbach process

2
k

2T 0By 1 -
vir =7 2\ Z =) 60" [i)| [ £ 11QIm)|*p; (AE;:)
h 29 ),

j k=2,4,6 q=—k

<nj + 1|Q|nj) — Is the vibrational mode occupied at transition energy?



Single Molecule Magnets

* Our approach to ab initio spin dynamics
Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)
Vibronic coupling — distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

» Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates y; for the Orbach process

2
k

2T 0By 1 -
vir =7 2\ Z =) 60" [i)| [ £ 11QIm)|*p; (AE;:)
h 29 ),

j k=2,4,6 q=—k

Pj (AEfl-) — How close in energy are the vibration to the electronic state?
(only free parameter in our approach)

A(E)

Nat. comm. 2017, 8, 14620



Single Molecule Magnets

Our approach to ab initio spin dynamics
Geometry optimisation & frequency calculation of gas-phase molecule (DFT-PBE)

Vibronic coupling — distort along normal modes, calculate electronic structure (CASSCF) and refer to equilibrium one (CFPs)

» Taylor series for CFPs’ dependence on distortion to describe spin-phonon coupling Hamiltonian

Calculate transition rates y; for the Orbach process

Simulate dynamics as a classical kinetic process master matrix

d
S0 = Y rypy (O = vpi(0)]

f#i
E
\ — T
— 4 Diagonalise matrix I' at different
f— T and obtain T to compare
- directly to relaxation profiles.



Single Molecule Magnets

Our approach to ab initio spin dynamics — comparison to experiment (JACS. 2021, 143, 15, 5943)
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Single Molecule Magnets

* Qur approach to ab initio spin dynamics — can we do better? (JACS. 2021, 143, 15, 5943)
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Single Molecule Magnets
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Organic Radicals

* How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states
Multiple ways to generate monoradicals: captodative, photolysis, redox — not discussed here

Di/polyradicals through extended m-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)
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How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states
Multiple ways to generate monoradicals: captodative, photolysis, redox — not discussed here

Di/polyradicals through extended m-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)

» Lattice classification — odd alternant with non-disjoint non-bonding MOs are target
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Organic Radicals

How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states
Multiple ways to generate monoradicals: captodative, photolysis, redox — not discussed here

Di/polyradicals through extended m-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)

» Lattice classification — odd alternant with non-disjoint non-bonding MOs are target

x x N = nstarred _ nnon—starred
* *
( : Neven — O/Nodd =2

* * * *

; 2 @ ./@N. Cﬁ' How much do NBMOs overlap?

. A little for even / A lot for odd

i T | T
(because orthogonal and degenerate,
Sap~0 while K, # 0 with AEgr= —2K,})




Organic Radicals

How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states

Multiple ways to generate monoradicals: captodative, photolysis, redox — not discussed here

Di/polyradicals through extended m-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)

» Lattice classification — odd alternant with non-disjoint non-bonding MOs are target

* * * *
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— pStarred __ .,non-—starred
N=n n

Neven — O/Nodd =2

How much do NBMOs overlap?

A little for even / A lot for odd

(because orthogonal and degenerate,
Sap~0 while K, > 0 with AEgr= —2K,3)

Broken bonds to access diamagnetic state?

0 for even / 1 for odd



Organic Radicals

How to trick metal-free molecules into not forming bonds: topological stabilisation of open-shell states
Multiple ways to generate monoradicals: captodative, photolysis, redox — not discussed here

Di/polyradicals through extended m-systems and topological criteria: polycyclic aromatic hydrocarbons (PAHs)
» Lattice classification — odd alternant with non-disjoint non-bonding MOs are target

Caution: these are approximate guidelines derived for idealised systems. Real molecules are MUCH trickier
» Other crucial factors for radical stabilisation: kinetic (steric) and thermodynamic (delocalisation)
» Radicals are particularly sensitive to solvent effects

> Nevertheless useful



Organic Radicals

* Impact of structural flexibility — A molecular junction (Nano Lett. 2016, 16, 3, 2066—2071)

Experimental inconsistencies (IETS)
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Organic Radicals

* Impact of structural flexibility — A molecular junction (Nano Lett. 2016, 16, 3, 2066—-2071)

Experimental inconsistencies (IETS)

Low-spin High-spin
ground state | ground state
| 8.=

Ground state
changes with
sample
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Organic Radicals

* Impact of structural flexibility — A molecular junction (Nano Lett. 2016, 16, 3, 2066—2071)
Computational insight
> lsing Hamiltonian to calculate exchange interaction as H = Z]ij S‘iZS’jZ with J1, = J,3 = J13 =] (isosceles)

(i)
> Broken symmetry (DFT) approach: HS = |aaa), LS = |aaf) = |afa) = |faa) = E|1 sy — E\ysy =]

ClI, Cl
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Organic Radicals

Impact of structural flexibility — A molecular junction (Nano Lett. 2016, 16, 3, 2066—2071)
Computational insight
> lsing Hamiltonian to calculate exchange interaction as H = Z]ij S‘iZS’jZ with J1, = J,3 = J13 =] (isosceles)

(i,))
> Broken symmetry (DFT) approach: HS = |aaa), LS = |aaf) = |afa) = |faa) = E|1 sy — E\ysy =]
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Organic Radicals

Impact of structural flexibility — A molecular junction (Nano Lett. 2016, 16, 3, 2066—2071)
Computational insight
> lsing Hamiltonian to calculate exchange interaction as H = Z]ij S‘iZS’jZ with J1, = J,3 = J13 =] (isosceles)

(i)
> Broken symmetry (DFT) approach: HS = |aaa), LS = |aaf) = |afa) = |faa) = E|1 sy — E\ysy =]

12 I T I 1 T 1 7 20
» Explore torsion with dihedrals
0
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Organic Radicals

* Impact of structural flexibility — Chirality meets ferromagnetism (JACS, 2016, 138 (16), 5271)



Organic Radicals

* Impact of structural flexibility — Chirality meets ferromagnetism (JACS, 2016, 138 (16), 5271)

Building blocks towards low-dimensionality systems R

» Previous failed synthetic efforts imposed planarity .O‘ - /@\

R RN



Organic Radicals

Impact of structural flexibility — Chirality meets ferromagnetism (JACS, 2016, 138 (16), 5271)

Building blocks towards low-dimensionality systems R
» Previous failed synthetic efforts imposed planarity /O\ e
Can the inherent structural flexibility be exploited? R

» B3LYP calculations in periodic & gas-phase to compare structural and magnetic properties of different conformers

» Broken symmetry approach to 15t neighbours interactions



Organic Radicals

Impact of structural flexibility — Chirality meets ferromagnetism (JACS, 2016, 138 (16), 5271)

Building blocks towards low-dimensionality systems

» Previous failed synthetic efforts imposed planarity /@\ e

Can the inherent structural flexibility be exploited?

» B3LYP calculations in periodic & gas-phase to compare structural and magnetic properties of different conformers
» Broken symmetry approach to 1%t neighbours interactions
» Linear vs helix:
Helix structure is stabilised 2.8 Kcal/mol per radical center
Jis 18% larger in helix (~ 390 cm™)

» Ferromagnetism & chirality on the same molecular platform




Organic Radicals

Impact of structural flexibility — Chirality meets ferromagnetism
Let’s speculate
» Synthetically feasible

» Structural anisotropy induces
magnetic anisotropy

» Enantiomeric separation

> Functional




Organic Radicals

Impact of structural flexibility — Chirality meets ferromagnetism
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» Enantiomeric separation
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> Functional

Proposal as spin-filter

» Transport calculations (?)
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